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Abstract. The Lipkin—Meshkov—Glick model is studied at finite temperature in mean field
approximation. The imaginary time method is used to calculate the energy splitting due to
tunnelling, by solving the equations of motion in Euclidean time and adapting the instanton
approximation to finite temperatures. In this way we are also able to determine the pre-
exponential factor at finite temperature.

1. Introduction

The Lipkin—Meshkov—Glick (LMG) model [1] is a good testing ground for approximation
methods. Along with other schematic models it is important in present studies in many-body
theory (see [4] for a review). In addition, some of its properties are reminiscent of real
physical systems. As we shall see, the form of the mean field potential extracted from the
LMG model is similar to the situation encountered in the N\NHolecule. In this note we
concentrate on the temperature behaviour of the LMG model. We study the form of the mean
field potential and investigate the dynamical properties with the aim to determine the energy
level separation of the lowest levels. To achieve this we consider motion in Euclidean time
to describe barrier penetration within the imaginary time method [2]. The level separation is
obtained as the energy splitting due to tunnelling in the spirit of the instanton approximation
[3, 4], but this approximation is extended herditote temperature. In this way we are also
able to calculate the pre-exponential factor not considered in other studies, e.g. [2,5, 6] in
the context of nuclear physics or [7] in the context of the LMG model.

The extension of the instanton approximation to finite temperature is the main (and new)
result of the present work, allowing us to calculate the full expression, in an approximate
manner, for the energy splitting at finite temperature.

The present article is structured as follows. After this introductory section, the mean field
free energy is derived in section 2 and the two possible equilibrium solutions are discussed.
In section 3 we calculate the mean field Lagrangian, passing to canonical variables, and
determine the equations of motion. Section 4 deals with the imaginary time method and
instanton approximation, used to evaluate tunnelling processes. The results of the dynamical
(tunnelling) calculations are presented and discussed in section 5, which concludes with a
short summary.
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2. Mean-field description of the static properties

The LMG model [1] is a two level system witN fermions. We use the quasispin operators

N
—%Z,M&zz%) @)
N
Z ialI (2)
with the indicesi+, i — indicating the creationa(") or annihilation &) of a particle in the

ith state of the upper or lower energy level, respectively. The LMG Hamiltonian is then
expressed as

H=el+V(J24J?. @)

Heree is the (positive) parameter describing the energy level spacing and we agsulre
interaction strength, to be negative. The mean field density matrix takes the form [8—10]

Do = Koeh (4)
where
h=a1Jz3+ o], —i—Ol;J_ (5)

is the mean field Hamiltoniary; anda, are real and complex numbers, respectively, and
Ko guarantees that g = 1.
Minimizing the free energy

F =tr(DoH) + ;tr(Do In Do) (6)

determines the equilibrium values of the parametersat a given inverse temperature
B = 1/kT (k is the Boltzmann constant). It is useful, however, to work with the
diagonalized density matrix [8—10]

D=Ke" @
K=1/tre
which is obtained fromDg by the unitary transformation
D =UDoU™" (8)
where
U =e+tn-, 9)

This means that one passes from the parameterto y and n (real and complex,
respectively). The free energy thus becomes

V(N D 0?40 -1 14
=eJ cos(Z,/nn ) J —- sir?(2,/nn*) + E [yJ —Nln <2cosm2>]
(10)
with the definition
N
J =TI =5 tanhg. (11)

The equilibrium values of the new parameters are then
n= 0 Yy = —,36 (12)
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which we callphase 1 or

cos2i = —% y = —2BV(N — 1) tanhg (13)

with 2in real, which isphase 2 It only exists forV < 0 and under the following
simultaneous conditions:
—-V(IN-D1p>1 —2V(N =1 /e > 1. (14)

A third solution with cos 2j = 0 andy = 0 is uninteresting since it would correspond to
infinite entropy.

The parametey diverges to—oo at vanishing temperature in both phases. This is seen
in (13) by taking the limit8 — oo; see appendix A.

3. Dynamical properties

3.1. The mean field Lagrangian

To obtain the equations of motion we proceed to determine the Lagrangian. We assume the
system to be in a heat bath, which fixes Then the Lagrangian is

— 0 — n*n—=n*n .
L=Tr (D0|h> —F=irg """ NG Sun — F. (15)
Jat nn*
With the substitution
. —igq
v =2] 7 sin nn* = P (16)
NOUM V2

(p, q real) the Lagrangian takes the canonical form
k. .
L=54p—qp)—F 17)
with the free energy expressed as
1 4
F=H+ ) (yJ —Nln (ZCost)) (18)
and the energy as
A
H=—e]+ (0" = p)’ — (¢* = 4d)’] (19)

where
A =2V(N —1)/N
—eN

S=o o —2J
Po=oyiv— 1 (20)
2 +eN
= — - 2]-
=y v -1

Note that contrary to) andn*, the new variableg and p are canonically conjugate.
It is interesting also to evaluate the zero temperature limi ofn this casey becomes
—o0 in both phases and the free energy reduces to

F=H (tanhg N —1) . 1)

We show in figure 1 the behaviour of the free energy with= 0 as a function of the
coordinateq, at various temperatures (in dimensionless energy units with the Boltzmann
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Figure 1. The shifted free energyy, at p = 0, as a function of; at different values of the
temperatutel’, in phases 14) and 2 p). The parameters of the model ake= 20,V = —1
ande = 1.

constantt = 1) and in both phases. The model parameters at€l, V = —1 andN = 20.

Since the motion is independent of the definition of the zero point of the potential energy,
the free energy displayed in figure 1 is shifted such that the mininf& pf= 0, ¢) are zero.

This shifted free energy is denotdy, and forp = 0 it takes the role of a potential energy.

The potential energy as a function @fis symmetric and exhibits two pockets separated by

a barrier. This situation is reminiscent of the Nkhaser. The quantum mechanical ground
state in each pocket is split due to tunnelling through the barrier and the transitions between
the two neighbouring energy levels correspond to the ammonia microwave frequency. In
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phase 1, figure &), the height of the barrier diminishes rapidly with increasing temperature
in the range up t&@ = 1. For higher temperatures the barrier continues to decrease more
slowly; the change inFy is not visible at the scale of figure d), once the temperature
reached’ ~ 10. The barrier height in phase 2 behaves similarly, except that now the curves
in the temperature rangé = 0. .., 1 are indistinguishable, and the decrease becomes more
and more pronounced with increasing temperaturesl” At 19 the barrier vanishes in both
phases, which become identical here (see the discussion in appendix A).

The dependence of the free energy on the pair of conjugate varialaledq is depicted
in figure 2. AtT = 0, figure 2&), both phases coincide and the barrier has its maximum
height. AtT = 15 the barrier has virtually vanished in phase 1 (figutg)2but not yet in

phase 2 (figure 2{). Note thatp is the momentum conjugate toand not an independent
variable.
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3998 A H Blin et al

3.2. The equations of motion

The equations of motion

— oF _ oF

hg = — hp=—— 22

=% p 37 (22)
can be decoupled into separate equations;fand p:

. A 3 1

= 2l-a"— a0’ + gin)® + Pa((q% — gd)? + gin)]? (23)

. A 3 1

b= =" = p)* - gin)? +a2((p? — pD)? — g (24)
where

(p® = P9)* — (4° — 45)° = (Pl — PD* — (ain — 45)° = &in (25)

is a constant of motion, fixed by the initial values pfand ¢, pin andgi,. This is the
case since we assumeto be kept fixed. The correct sign of the roots in evaluating the
half-integer powers is determined by the initial conditions.

4. Tunnelling

To describe barrier penetration at finite temperature we have recourse to the imaginary time
method [2]. The (real time) action

2
S = / dr L (26)
1
is continued to imaginary time by writing the Euclidean action
2 in (T2 (d d
a:/ Zerz— zdt —qp—q—p —FT (27)
-8 2 ) s dr dr

where the motion in Euclidean time= it € % is constrained by the boundary condition

q(r:—l;) =q<r=+'§) (28)

at a given temperaturg = 1/8 and where7 is the Euclidean time period of one full
cycle of motion. We have made use of the fact here that the free energy is a constant of
motion. Due to the replacement— /i, the equations of motion correspond to motion in
imaginary time in an inverted potential.

The equations of motion in Euclidean time take the form

d A

d% =-7l@* - a0’ + gin)? — pa((q® — gd) + gl (29)

d A 1

OTI; =" —pp)* - gin)? — g3 ((p? — p§) — gm)]2. (30)
The expressions fop andg necessary to evaluate are obtained directly from (25),

iq = [((p° = P))* — gi)? — 4312 (31)

ip=1[((q%— g%+ gm)? — P12, (32)

There are two types of solution (see also [5, 6]):
(i) g(r) = 0, calledstatistical fluctuationsand
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(i) solutions with7 = 8, calledquantum fluctuationd.e. tunnelling. This is the kind
of solutions we study here. The boundary condition (28) fixes the initial valug wfith
pin = 0, at any given temperature; i.gy, has to be adjusted such that the dynamical
equations yield the correct peridd.

The tunnelling probability and the energy splitting are proportional to the exponential
of the Euclidean action for tunnelling through the barrier. At zero temperature the energy
of level splitting can be obtained in the instanton approximation [3, 4]. Generalized to finite
temperature the energy splitting can be written as a pre-exponential factor multiplying the
action exponential /2

AE =2 /2" geror2, (33)
T

The generalization to finite temperature means that = qo for T # 0; gin has to be
determined to satisfy the boundary condition (28) instead. In our case there is the additional
difficulty that the energy contains;# dependent term. The generalizatiorptbdependence

of the energy is achieved by using the equations of motion in evaluating the eraod

the actiono (27), rather than the expressions in [3, 4] involving only the potential (valid in
the absence of nonquadratic terms). We use here and in the sequel units=with= k = 1.

The quantityog in the above equation is

+ginl
<m=—2/ quJQZ—%ﬂ+gm—pé—%@m=04m7 (34)

Igin|

with
Ao 2)2 2 232 4
Fo(p.q) =, 1(p" = po)” — (¢" — 40)" — Po] (35)
B = w(qo— Ign)e’”/* (36)
+gin| dq |
T=2 / =B (37)
—lqnl dg/dT
w is related to the curvature of the potential negr
w? = —2Aqd/m (38)
and the mass is
1
PoA

Equation (38) holds in the strict instanton approximation, i.e. [fgfl = go. At finite
temperatures, however, we haig | # go and we extractr from the real-time oscillation
period as

Vo§—ah gg 17

w =21 [2 / } (40)
gin] q

where the integral limits are the turning points. In the lifgif,| — go, this expression

reduces to (38).

Note thatog and Fy differ from o and F by shifting of the potential by a constant, such
that the minima have zero potential energy (the motion is of course independent of additive
constants). At zero temperature the energy of level splitting reduces to the expression given
in [4]. In particular, the boundary condition (28) &t = 0 imposes|gin| — go. At this
point, however,7 diverges and we have to evaluate explicitly the lifgit,| — go in B,
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which stays finite. This limit is discussed in appendix B, along with the limit- g at
which the integrand in (37) diverges.

Let us mention for the sake of completeness that, according to [11], the splitting of the
nth energy level is related to the level splitting of the ground state (33) by

. (2B%m)"
T nlon

as long as the potential well can be assumed quadratic up to the energy mthttesel.

AE, AE (41)

0.8
07}
06| T=0
05}

AE g4l
03}
02}

01F

Figure 3. The energy level splittingAE in the instanton approximation as compared to the
exact results, as a function of the potential paramgtén units V Ne~1), for N = 14 atT = 0.

5. Results of the dynamical calculations and discussion

First let us compare the instanton approximation to the exact results [1] at zero temperature.
Figure 3 shows the exact and approximate level differences of the lowest energy states in
the caseV = 14 as functions of the potential parameter The approximation is reasonable
albeit not perfect. Note that the method breaks down for valudye >~ —1 since the
ground state energy/2 becomes of the order of the potential barrier height so there is no
longer any tunnelling.

The behaviour in terms of temperature can be understood by looking at the dependence
of the potential barrier on the temperature: increasing the temperature diminishes the barrier
so the energy splitting increases. This is shown in figure 4 for both phases using the same
set of parameters as in figure 1. There is a limiting temperature for each phase from which it
becomes impossible to fulfil the conditidh = g since7 becomes too long for any initial
value ofg. In any case, close to this limiting temperature the instanton approximation
becomes unreliable singg;,| cannot be chosen close 4g, in order to have a short enough
Euclidean time period; therefore the motion is not of the instanton type any longer. Note
the different energy and temperature scales in both phasesI’ At0 both phases are
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Figure 4. The energy level splittingAE in instanton approximation as a function of the
temperaturel’ in phase 14) and phase 2h). The set of parameters is as in figure 1.

identical so the curves start off at the same value of the energy splittifig In phase 1

the rise is much more pronounced than in phase 2 and the limiting temperature is reached
much earlier. This is of course due to the behaviour of the potential barrier as represented
in figure 1; the decrease of the barrier height with increasing temperature is faster in phase
1 than in phase 2.

It is instructive to see the influence of the pre-exponential factor which is often neglected
in this kind of calculation. Figure 5 depicts the variation of this factor, which multiplies the
action exponent in expression (33), as a function of the temperature. The set of parameters
is again as in figure 1, and we show the behaviour of the factor in phase 1. In figure 5
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Figure 5. The pre-exponetial factor, normalized to 17at= 0, as a function of the temperature
T in phase 1. The set of parameters is as in figure 1.

it is normalized to 1 af" = 0 so the deviation from the value 1 indicates its importance.
As one can see, this factor is not constant at all but diminishes appreciably with increasing
temperature.

To summarize, we have extracted a mean field Lagrangian from the LMG model
at finite temperatures. Then we studied the equations of motion in Euclidean time and
adapted the instanton method to finite temperature tunnelling. The instanton approximation
assumes that the system spends most of the time near the initial position, and that the
motion which corresponds to tunnelling is fast compared to this, hence the name instanton.
This approximation is reasonable for not too large temperatures wWigrés close togqo,
and larger deviations from the exact behaviour at higher temperatures are expected. The
advantage of the method presented here is that it makes it possible to calculate, in an
approximate manner, the full expression of the energy splitting at finite temperature, and
not just the exponential factor containing the action.

Appendix A

This appendix deals with the dependence of the potential on temperature.

A.1l. The zero-temperature limit of the two phases

To see the behaviour of at T = 0, we observe first that = 0 andy — —oo for 8 - o

in phase 1. In phase 2, to hayefinite for infinite 8, ¥y would have to vanish, see the
second term of (13), which would correspond to infinite entropy. Thumnnot be finite
and must diverge. In that case, the hyperbolic tangent goesl falepending on the sign
of y; it is the negative values of, however, which give theninimumfree energy. Thus
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by (13)
€

(A1)

A.2. The limitgg — 0

The potential barrier disappears when the two minimg and —go merge, so the potential
becomes purely quartic. Using (20) and (11) this happens when

% €
tanh> = — ——. A2
M = viN— 1) (A2)
Expressingy by g, relations (12) and (13), it turns out that limth phases
Be €
e ¢ A
= = Sy =1 (A3)

describes the temperature of vanishing potential barrier. Adse,0 in both cases, so the
phases become indistinguishable at this point.

Appendix B
This appendix shows how to treat the singularities related to the Euclidean time @eriod

B.1. The limit|g;,| — qo

We consider here the limiting behaviour Bf(36). We split the Euclidean time period (37)
into two pieces,

T = TA + ﬁest (Bl)
with
T —qotet+A ¢
A / 4 (B2)
4 —qo+e dg/dt
and
Trest _ / ’ dg (83)
4 —gote+a Og/dT

i.e. we perform the substitutiofy, = —go + € (gin < 0 here and;y > 0 by definition) and
split 7 into its two parts at the poinj = gin + A. We assume\ to be small compared to
po andgo ande <« A. The expression for the derivative gfbecomes

A .
dg/dr = —fpo[A(A(ZqS — 6g0€) + 4qge)]z. (B4)

This is inserted into (B2) and the integration performed. Taking then the entiatit, i.e.
gin = —qo + € = —qo, Yields
Zs = 1 In Z—A. (B5)
4 w €
This expression diverges obviously wher> 0, which is exactly the instanton behaviour.
But B (36) stays finite in this limit,
oTrest

B =2wAe & (B6)
and therefore the energy splitting as well.
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B.2. The limitg — g;,

Independent of the initial value af, the integrand of/” diverges forg close togi,. The
derivative ofg becomes a = gin + A (A small compared tpo andgg, andgin < O here)

A
dg /dr = — = pol(24in(gf, — 45) + Aa)A]? (87)
with

a = 3q5 — 4§ + 645 (ai — 48)*/ Po (B8)
so the first part of expression far becomes

TA _ /Qin+A dq
qin

4 dg/dz
2 —Ad — 2gin(q? — g2
A tanl\/ @ = 24n(Gin —4d0) _ T fora <0
ﬁ)]’O\/ a Aa 2
1 24 for 0
= a =
(=M po\ gin(gd — 4d)
2 [Vaar JAa + 2qn(a3 — gd) oo
A a > U,
(=7)pova 242 — 42)
(B9)

Similar expressions are obtained in the evaluationvofd0) in the limitg — |ginl,
changing some signs in the appropriate places, and a corresponding one in the limit

q — \/2615_‘151-
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