
Tunnelling at finite temperature in the LMG model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 3993

(http://iopscience.iop.org/0305-4470/29/14/023)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 02:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 3993–4004. Printed in the UK

Tunnelling at finite temperature in the LMG model

Alex H Blin, Brigitte Hiller and Li Junqing†
Centro de F́ısica Téorica, Universidade de Coimbra, P-3000 Coimbra, Portugal

Received 8 December 1995, in final form 12 April 1996

Abstract. The Lipkin–Meshkov–Glick model is studied at finite temperature in mean field
approximation. The imaginary time method is used to calculate the energy splitting due to
tunnelling, by solving the equations of motion in Euclidean time and adapting the instanton
approximation to finite temperatures. In this way we are also able to determine the pre-
exponential factor at finite temperature.

1. Introduction

The Lipkin–Meshkov–Glick (LMG) model [1] is a good testing ground for approximation
methods. Along with other schematic models it is important in present studies in many-body
theory (see [4] for a review). In addition, some of its properties are reminiscent of real
physical systems. As we shall see, the form of the mean field potential extracted from the
LMG model is similar to the situation encountered in the NH3 molecule. In this note we
concentrate on the temperature behaviour of the LMG model. We study the form of the mean
field potential and investigate the dynamical properties with the aim to determine the energy
level separation of the lowest levels. To achieve this we consider motion in Euclidean time
to describe barrier penetration within the imaginary time method [2]. The level separation is
obtained as the energy splitting due to tunnelling in the spirit of the instanton approximation
[3, 4], but this approximation is extended here tofinite temperature. In this way we are also
able to calculate the pre-exponential factor not considered in other studies, e.g. [2, 5, 6] in
the context of nuclear physics or [7] in the context of the LMG model.

The extension of the instanton approximation to finite temperature is the main (and new)
result of the present work, allowing us to calculate the full expression, in an approximate
manner, for the energy splitting at finite temperature.

The present article is structured as follows. After this introductory section, the mean field
free energy is derived in section 2 and the two possible equilibrium solutions are discussed.
In section 3 we calculate the mean field Lagrangian, passing to canonical variables, and
determine the equations of motion. Section 4 deals with the imaginary time method and
instanton approximation, used to evaluate tunnelling processes. The results of the dynamical
(tunnelling) calculations are presented and discussed in section 5, which concludes with a
short summary.
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Republic of China
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2. Mean-field description of the static properties

The LMG model [1] is a two level system withN fermions. We use the quasispin operators

J3 = 1
2

N∑
i=1

(a+
i+ai+ − a+

i−ai−) (1)

J± =
N∑

i=1

a+
i±ai∓ (2)

with the indicesi+, i− indicating the creation (a+) or annihilation (a) of a particle in the
ith state of the upper or lower energy level, respectively. The LMG Hamiltonian is then
expressed as

Ĥ = εJ3 + V (J 2
+ + J 2

−). (3)

Hereε is the (positive) parameter describing the energy level spacing and we assumeV , the
interaction strength, to be negative. The mean field density matrix takes the form [8–10]

D0 = K0e
h (4)

where

h = α1J3 + α2J+ + α∗
2J− (5)

is the mean field Hamiltonian,α1 andα2 are real and complex numbers, respectively, and
K0 guarantees that trD0 = 1.

Minimizing the free energy

F = tr(D0Ĥ ) + 1

β
tr(D0 ln D0) (6)

determines the equilibrium values of the parametersαi at a given inverse temperature
β = 1/kT (k is the Boltzmann constant). It is useful, however, to work with the
diagonalized density matrix [8–10]

D = Keγ J3

K = 1/ tr eγ J3
(7)

which is obtained fromD0 by the unitary transformation

D = UD0U
+ (8)

where

U = eηJ++η∗J− . (9)

This means that one passes from the parametersαi to γ and η (real and complex,
respectively). The free energy thus becomes

F = εJ cos
(

2
√

ηη∗
)

− V (N − 1)

N
J 2 η2 + η∗2

ηη∗ sin2(2
√

ηη∗) + 1

β

[
γ J − N ln

(
2 cosh

γ

2

)]
(10)

with the definition

J = Tr(DJ3) = N

2
tanh

γ

2
. (11)

The equilibrium values of the new parameters are then

η = 0 γ = −βε (12)
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which we callphase 1, or

cos 2iη = −εβ

γ
γ = −2βV (N − 1) tanh

γ

2
(13)

with 2iη real, which is phase 2. It only exists for V 6 0 and under the following
simultaneous conditions:

−V (N − 1)β > 1 − 2V (N − 1)/ε > 1. (14)

A third solution with cos 2iη = 0 andγ = 0 is uninteresting since it would correspond to
infinite entropy.

The parameterγ diverges to−∞ at vanishing temperature in both phases. This is seen
in (13) by taking the limitβ → ∞; see appendix A.

3. Dynamical properties

3.1. The mean field Lagrangian

To obtain the equations of motion we proceed to determine the Lagrangian. We assume the
system to be in a heat bath, which fixesγ . Then the Lagrangian is

L = Tr

(
D0ih̄

∂

∂t

)
− F = ih̄J

η̇∗η − η∗η̇
ηη∗ sin2

√
ηη∗ − F. (15)

With the substitution
√−2J

η√
ηη∗ sin

√
ηη∗ = p − iq√

2
(16)

(p, q real) the Lagrangian takes the canonical form

L = h̄

2
(q̇p − qṗ) − F (17)

with the free energy expressed as

F = H + 1

β

(
γ J − N ln

(
2 cosh

γ

2

))
(18)

and the energy as

H = −εJ + 3

4
[(p2 − p2

0)
2 − (q2 − q2

0)2] (19)

where

3 = 2V (N − 1)/N

p2
0 = −εN

2V (N − 1)
− 2J

q2
0 = +εN

2V (N − 1)
− 2J.

(20)

Note that contrary toη andη∗, the new variablesq andp are canonically conjugate.
It is interesting also to evaluate the zero temperature limit ofF . In this case,γ becomes

−∞ in both phases and the free energy reduces to

F = H
(

tanh
γ

2
→ −1

)
. (21)

We show in figure 1 the behaviour of the free energy withp = 0 as a function of the
coordinateq, at various temperatures (in dimensionless energy units with the Boltzmann
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Figure 1. The shifted free energyF0, at p = 0, as a function ofq at different values of the
temperatuteT , in phases 1 (a) and 2 (b). The parameters of the model areN = 20, V = −1
andε = 1.

constantk = 1) and in both phases. The model parameters areε = 1, V = −1 andN = 20.
Since the motion is independent of the definition of the zero point of the potential energy,
the free energy displayed in figure 1 is shifted such that the minima ofF(p = 0, q) are zero.
This shifted free energy is denotedF0, and forp = 0 it takes the role of a potential energy.
The potential energy as a function ofq is symmetric and exhibits two pockets separated by
a barrier. This situation is reminiscent of the NH3 maser. The quantum mechanical ground
state in each pocket is split due to tunnelling through the barrier and the transitions between
the two neighbouring energy levels correspond to the ammonia microwave frequency. In
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phase 1, figure 1(a), the height of the barrier diminishes rapidly with increasing temperature
in the range up toT = 1. For higher temperatures the barrier continues to decrease more
slowly; the change inF0 is not visible at the scale of figure 1(a), once the temperature
reachesT ' 10. The barrier height in phase 2 behaves similarly, except that now the curves
in the temperature rangeT = 0 . . . , 1 are indistinguishable, and the decrease becomes more
and more pronounced with increasing temperatures. AtT = 19 the barrier vanishes in both
phases, which become identical here (see the discussion in appendix A).

The dependence of the free energy on the pair of conjugate variablesp andq is depicted
in figure 2. At T = 0, figure 2(a), both phases coincide and the barrier has its maximum
height. AtT = 15 the barrier has virtually vanished in phase 1 (figure 2(b)) but not yet in
phase 2 (figure 2(c)). Note thatp is the momentum conjugate toq and not an independent
variable.
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Figure 2. The free energyF in the space of variables
p and q, at vanishing temperature (a), where the two
phases are identical, and atT = 15 in phase 1 (b) and
phase 2 (c). Note thatp andq are not different degrees
of freedom but canonically conjugate variables. The set
of parameters is as in figure 1.
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3.2. The equations of motion

The equations of motion

h̄q̇ = ∂F

∂p
h̄ṗ = −∂F

∂q
(22)

can be decoupled into separate equations forq andp:

q̇ = 3

h̄
[−((q2 − q2

0)2 + gin)
3
2 + p2

0((q
2 − q2

0)2 + gin)]
1
2 (23)

ṗ = 3

h̄
[−((p2 − p2

0)
2 − gin)

3
2 + q2

0((p2 − p2
0)

2 − gin)]
1
2 (24)

where

(p2 − p2
0)

2 − (q2 − q2
0)2 = (p2

in − p2
0)

2 − (q2
in − q2

0)2 ≡ gin (25)

is a constant of motion, fixed by the initial values ofp and q, pin and qin. This is the
case since we assumeγ to be kept fixed. The correct sign of the roots in evaluating the
half-integer powers is determined by the initial conditions.

4. Tunnelling

To describe barrier penetration at finite temperature we have recourse to the imaginary time
method [2]. The (real time) action

S =
∫ t2

t1

dt L (26)

is continued to imaginary time by writing the Euclidean action

σ =
∫ + β

2

− β

2

dτ L = ih̄

2

∫ + β

2

− β

2

dτ

(
dq

dτ
p − q

dp

dτ

)
− FT (27)

where the motion in Euclidean timeτ = it ∈ < is constrained by the boundary condition

q

(
τ = −β

2

)
= q

(
τ = +β

2

)
(28)

at a given temperatureT = 1/β and whereT is the Euclidean time period of one full
cycle of motion. We have made use of the fact here that the free energy is a constant of
motion. Due to the replacementt → τ/i, the equations of motion correspond to motion in
imaginary time in an inverted potential.

The equations of motion in Euclidean time take the form

dq

dτ
= −3

h̄
[((q2 − q2

0)2 + gin)
3
2 − p2

0((q
2 − q2

0)2 + gin)]
1
2 (29)

dp

dτ
= −3

h̄
[((p2 − p2

0)
2 − gin)

3
2 − q2

0((p2 − p2
0)

2 − gin)]
1
2 . (30)

The expressions forp andq necessary to evaluateσ are obtained directly from (25),

iq = [((p2 − p2
0)

2 − gin)
1
2 − q2

0]
1
2 (31)

ip = [((q2 − q2
0)2 + gin)

1
2 − p2

0]
1
2 . (32)

There are two types of solution (see also [5, 6]):
(i) q(τ) = 0, calledstatistical fluctuationsand
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(ii) solutions withT = β, calledquantum fluctuations, i.e. tunnelling. This is the kind
of solutions we study here. The boundary condition (28) fixes the initial value ofq, with
pin = 0, at any given temperature; i.e.qin has to be adjusted such that the dynamical
equations yield the correct periodT .

The tunnelling probability and the energy splitting are proportional to the exponential
of the Euclidean action for tunnelling through the barrier. At zero temperature the energy
of level splitting can be obtained in the instanton approximation [3, 4]. Generalized to finite
temperature the energy splitting can be written as a pre-exponential factor multiplying the
action exponential eσ0/2:

1E = 2

√
ωm

π
Beσ0/2. (33)

The generalization to finite temperature means that|qin| 6= q0 for T 6= 0; qin has to be
determined to satisfy the boundary condition (28) instead. In our case there is the additional
difficulty that the energy contains ap4 dependent term. The generalization top4 dependence
of the energy is achieved by using the equations of motion in evaluating the periodT and
the actionσ (27), rather than the expressions in [3, 4] involving only the potential (valid in
the absence of nonquadratic terms). We use here and in the sequel units with ¯h = c = k = 1.
The quantityσ0 in the above equation is

σ0 = −2
∫ +|qin|

−|qin|
dq

√√
(q2 − q2

0)2 + gin − p2
0 − F0(pin = 0, qin)T (34)

with

F0(p, q) = 3

4
[(p2 − p2

0)
2 − (q2 − q2

0)2 − p4
0] (35)

B = ω(q0 − |qin|)eωT /4 (36)

T = 2
∫ +|qin|

−|qin|

dq

dq/dτ

!= β (37)

ω is related to the curvature of the potential nearq0,

ω2 = −23q2
0/m (38)

and the mass is

m = − 1

p2
03

. (39)

Equation (38) holds in the strict instanton approximation, i.e. for|qin| = q0. At finite
temperatures, however, we have|qin| 6= q0 and we extractω from the real-time oscillation
period as

ω = 2π

[
2

∫ √
2q2

0−q2
in

|qin|

dq

q̇

]−1

(40)

where the integral limits are the turning points. In the limit|qin| → q0, this expression
reduces to (38).

Note thatσ0 andF0 differ from σ andF by shifting of the potential by a constant, such
that the minima have zero potential energy (the motion is of course independent of additive
constants). At zero temperature the energy of level splitting reduces to the expression given
in [4]. In particular, the boundary condition (28) atT = 0 imposes|qin| → q0. At this
point, however,T diverges and we have to evaluate explicitly the limit|qin| → q0 in B,
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which stays finite. This limit is discussed in appendix B, along with the limitq → qin at
which the integrand in (37) diverges.

Let us mention for the sake of completeness that, according to [11], the splitting of the
nth energy level is related to the level splitting of the ground state (33) by

1En = (2B2m)n

n!ωn
1E (41)

as long as the potential well can be assumed quadratic up to the energy of thisnth level.
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Figure 3. The energy level splitting1E in the instanton approximation as compared to the
exact results, as a function of the potential parameterV (in unitsV Nε−1), for N = 14 atT = 0.

5. Results of the dynamical calculations and discussion

First let us compare the instanton approximation to the exact results [1] at zero temperature.
Figure 3 shows the exact and approximate level differences of the lowest energy states in
the caseN = 14 as functions of the potential parameterV . The approximation is reasonable
albeit not perfect. Note that the method breaks down for valuesV N/ε ' −1 since the
ground state energyω/2 becomes of the order of the potential barrier height so there is no
longer any tunnelling.

The behaviour in terms of temperature can be understood by looking at the dependence
of the potential barrier on the temperature: increasing the temperature diminishes the barrier
so the energy splitting increases. This is shown in figure 4 for both phases using the same
set of parameters as in figure 1. There is a limiting temperature for each phase from which it
becomes impossible to fulfil the conditionT = β sinceT becomes too long for any initial
value of q. In any case, close to this limiting temperature the instanton approximation
becomes unreliable since|qin| cannot be chosen close toq0, in order to have a short enough
Euclidean time period; therefore the motion is not of the instanton type any longer. Note
the different energy and temperature scales in both phases. AtT = 0 both phases are
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Figure 4. The energy level splitting1E in instanton approximation as a function of the
temperatureT in phase 1 (a) and phase 2 (b). The set of parameters is as in figure 1.

identical so the curves start off at the same value of the energy splitting1E. In phase 1
the rise is much more pronounced than in phase 2 and the limiting temperature is reached
much earlier. This is of course due to the behaviour of the potential barrier as represented
in figure 1; the decrease of the barrier height with increasing temperature is faster in phase
1 than in phase 2.

It is instructive to see the influence of the pre-exponential factor which is often neglected
in this kind of calculation. Figure 5 depicts the variation of this factor, which multiplies the
action exponent in expression (33), as a function of the temperature. The set of parameters
is again as in figure 1, and we show the behaviour of the factor in phase 1. In figure 5
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Figure 5. The pre-exponetial factor, normalized to 1 atT = 0, as a function of the temperature
T in phase 1. The set of parameters is as in figure 1.

it is normalized to 1 atT = 0 so the deviation from the value 1 indicates its importance.
As one can see, this factor is not constant at all but diminishes appreciably with increasing
temperature.

To summarize, we have extracted a mean field Lagrangian from the LMG model
at finite temperatures. Then we studied the equations of motion in Euclidean time and
adapted the instanton method to finite temperature tunnelling. The instanton approximation
assumes that the system spends most of the time near the initial position, and that the
motion which corresponds to tunnelling is fast compared to this, hence the name instanton.
This approximation is reasonable for not too large temperatures where|qin| is close toq0,
and larger deviations from the exact behaviour at higher temperatures are expected. The
advantage of the method presented here is that it makes it possible to calculate, in an
approximate manner, the full expression of the energy splitting at finite temperature, and
not just the exponential factor containing the action.

Appendix A

This appendix deals with the dependence of the potential on temperature.

A.1. The zero-temperature limit of the two phases

To see the behaviour ofγ at T = 0, we observe first thatη = 0 andγ → −∞ for β → ∞
in phase 1. In phase 2, to haveγ finite for infinite β, γ would have to vanish, see the
second term of (13), which would correspond to infinite entropy. Thusγ cannot be finite
and must diverge. In that case, the hyperbolic tangent goes to±1, depending on the sign
of γ ; it is the negative values ofγ , however, which give theminimum free energy. Thus
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by (13)

γ → 2βV (N − 1) → −∞ and cos 2iη = ε

2V (N − 1)
. (A1)

A.2. The limitq0 → 0

The potential barrier disappears when the two minima atq0 and−q0 merge, so the potential
becomes purely quartic. Using (20) and (11) this happens when

tanh
γ

2
= ε

2V (N − 1)
. (A2)

Expressingγ by β, relations (12) and (13), it turns out that inboth phases

tanh−βε

2
= ε

2V (N − 1)
(A3)

describes the temperature of vanishing potential barrier. Also,η = 0 in both cases, so the
phases become indistinguishable at this point.

Appendix B

This appendix shows how to treat the singularities related to the Euclidean time periodT .

B.1. The limit|qin| → q0

We consider here the limiting behaviour ofB (36). We split the Euclidean time period (37)
into two pieces,

T = T1 + Trest (B1)

with

T1

4
=

∫ −q0+ε+1

−q0+ε

dq

dq/dτ
(B2)

and

Trest

4
=

∫ 0

−q0+ε+1

dq

dq/dτ
(B3)

i.e. we perform the substitutionqin = −q0 + ε (qin < 0 here andq0 > 0 by definition) and
split T into its two parts at the pointq = qin + 1. We assume1 to be small compared to
p0 andq0 andε � 1. The expression for the derivative ofq becomes

dq/dτ = −3

h̄
p0[1(1(2q2

0 − 6q0ε) + 4q2
0ε)]

1
2 . (B4)

This is inserted into (B2) and the integration performed. Taking then the smallε limit, i.e.
qin = −q0 + ε → −q0, yields

T1

4
= 1

ω
ln

21

ε
. (B5)

This expression diverges obviously whenε → 0, which is exactly the instanton behaviour.
But B (36) stays finite in this limit,

B = 2ω1e
ωTrest

4 (B6)

and therefore the energy splitting as well.
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B.2. The limitq → qin

Independent of the initial value ofqin the integrand ofT diverges forq close toqin. The
derivative ofq becomes atq = qin + 1 (1 small compared top0 andq0, andqin < 0 here)

dq/dτ = −3

h̄
p0[(2qin(q

2
in − q2

0) + 1a)1]
1
2 (B7)

with

a = 3q2
in − q2

0 + 6q2
in(q

2
in − q2

0)2/p4
0 (B8)

so the first part of expression forT becomes

T1

4
=

∫ qin+1

qin

dq

dq/dτ

=



−2

(−3
h̄
)p0

√−a

tan−1

√
−1a − 2qin(q

2
in − q2

0)

1a
− π

2

 for a < 0

1

(−3
h̄
)p0

√
21

qin(q
2
in − q2

0)
for a = 0

2

(−3
h̄
)p0

√
a

ln

√
1a +

√
1a + 2qin(q

2
in − q2

0)√
2qin(q

2
in − q2

0)

 for a > 0.

(B9)

Similar expressions are obtained in the evaluation ofω (40) in the limit q → |qin|,
changing some signs in the appropriate places, and a corresponding one in the limit

q →
√

2q2
0 − q2

in.
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